CBT CLASS XII MATHS NOVEMBER-2023

<u>GENERAL INSTRUCTION :</u> CHAPTER: STRAIGHT LINE

Sr.No	Question	Marks
	Case Study 1 Based on the information given below answer the following questions An Aeroplane was hovering over a terrorist camp with a shooter sitting inside it. The shooter was closely observing the movement of the terrorists and was looking for an opportunity to shoot terrorist. At any particular instance the coordinates of the position of the Aeroplane and the terrorist are (- 2,- 1, - 3) and (1, - 3, 3)respectively.	
1	The Direction Ratios of the line joining points (- 2, - 1, - 3) and (1, - 3, 3) are (a) 3, -2, 1 (b) 1, 2, 6 (c) 3, -2, 6 (d) 3, -2, 5 (d) 3, -2, 5	1
2	Equation of the line joining the points (- 2,- 1, - 3) and (1, - 3, 3) is* (a) $(x+4)/3=(y-3)/(-2)=(z+3)/6$ (b) $(x-2)/4=(y-1)/2=(z+3)/6$ (c) $(x+2)/5=(y-1)/(-2)=(z-3)/6$ (d) $(x+2)/3=(y+1)/(-2)=(z+3)/6$	1
3	The distance between the given two points is (a) 10 units (b) 2 units (c) 7 units (d) 5 units	1
4	The Direction Cosines of the line joining points (- 2 ,- 1 , - 3) and (1 , - 3 , 3) are	1
	(a) 3/7, -2/7, 6/7 (b) 3/7, -2/7, 1/7 (c) 1/7, 2/7, 6/7 (d) 3/7, -2/7, 5/7	
	The equation of motion of a missile are $x = 3t$, $y = -4t$, $z = t$ where the time t is given in seconds and the distance is measured in kilometers	
5	Equation of path of the missile is (a) $x/(-3) = y/4 = z/1$ (b) $x/3 = y/(-4) = z/1$ (c) $x/3 = y/4 = z/(-1)$ (d) $x/3 = y/4 = z/1$	1
6	The distance of the missile from the starting point (0,0,0) in 5 second	1
7	(a) $\sqrt{650}$ km (b) $\sqrt{750}$ km (c) $\sqrt{550}$ km (d) $\sqrt{450}$ km	1
	If the position of the missile at a certain instant of the time is (5 - 8 10) than the height	
	of the missile from the ground (consider ground as XY- plane) is: (a) 5 kms (b) 8 kms (c) 10 kms (d) $\sqrt{89}$ kms	
8	 (a) 5 kms (b) 8 kms (c) 10 kms (d) √89 kms If equations of path of two missiles are as follows, which are perpendicular to each other than value of k is x-1/2 = y-1/3 = z-1/k and x-2/(-2) = y-3/(-1) = z^{-5}/7 (a) k = 2 (b) k = -1 (c) k = 1 (d) k = -2 	1
	Directions: (Q.9 – Q.10) Each of these questions contains two statements: Assertion (A) and Reason (R). Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the options (a), (b), (c) and (d) given below : (a) A is true, R is true and R is a correct explanation for A (b) A is true, R is true and R is not a correct explanation for Assertion (c) A is true and R is false	

9

10

Assertio	$n(A): If \vec{a}$	$=3\hat{\iota}-2$	$\hat{i}+2\hat{k}$, $ec{b}=3\hat{i}+3\hat{j}+3\hat{k}$ then $ec{a}.ec{b}=9$	1
а	b	С	d	
Reason (R): Cosine o	f the ang	le between the two vector $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\cos\theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{ \vec{\mathbf{a}} \vec{\mathbf{b}} }$	
Assertio	on (A): Cosin	e of the a	ngle between the two vector $2\hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ and $6\hat{\imath} - 3\hat{\jmath} + 2\hat{k}$ is $\frac{16}{21}$	1

Assertion(A): If $\vec{a} = 3\hat{\imath} - 2\hat{\jmath} + 2\hat{k}$, $\vec{b} = 3\hat{\imath} + 3\hat{\jmath} + 3\hat{k}$ then \vec{a} . $\vec{b} = 9$ Reason(R): If $\vec{a} = a_1\hat{\imath} + a_2\hat{\jmath} + a_3\hat{k}$ then its magnitude $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

а b c d

Answer Key

Ans1	(<u>c)</u>					
Feedback	<i>Option (c) is correct, since direction ratio of two points (</i> x_1y_1, z_1 <i>), (</i> x_2, y_2, z_2 <i>) = </i> $x_2 - x_1$ <i>, </i> $y_2 - y_1$ <i>, </i> $z_2 - z_1 = 3, -2, 6$					
Ans2	(d)					
Feedback	Option (d) $(x+2)/3=(y+1)/(-2)=(z+3)/6$ is correct, since equation of line passes through two points $(x_1y_1,z_1), (x_2,y_2,z_2)$ is: $(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1) = (z - z_1)/(z_2 - z_1)$					
Ans3	(c)					
<u>Feedback</u>	<i>Option (c) is correct, since distance between two points (</i> x_1y_1, z_1 <i>), (</i> x_2, y_2, z_2 <i>) is </i> $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ <i> so distance between (</i> $-2, -1, -3$ <i>) and (</i> $1, -3, 3$ <i>) is 7</i>					
Ans4	(a)					
Feedback	Option (a) $3/7$, $-2/7$, $6/7$ is correct, since direction cosine of two points (x_1y_1, z_1), (x_2, y_2, z_2) is: $(x_2 - x_1), (\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}), (y_2 - y_1)/(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}), (y_2 - y_1)/(\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2})$					
<u>Ans5</u>	(b)					
<u>Feedback</u>	Correct option is (b), since given equation of motion of a missile be $x = 3t$, $y = -4t$, $z = t \Rightarrow x/3 = y/-4 = z/1$ which is a straight line.					
Ans6	(a)					
<u>Feedback</u>	Option (a) $\sqrt{650}$ km is correct, since position of missile after 5 seconds $x=3*5=15$, $y=-4*5=-20$, $z=5$, so distance between (0,0,0) and (15,-20,5) is $\sqrt{650}$					
Ans7	(c)					
Feedback	Correct option is (c) 10 kms, since position of missile certain time is (5,-8,10) so height of missile from ground = distance between points (5,-8,0) and (5,-8,10) is 10 kms					
Ans8	(c)					
Feedback	Option (c) is correct, since if two lines are perpendicular and it's direction ratio a_1 , b_1 , c_1 and a_2 , b_2 , c_2 than $a_1.a_2 + b_1.b_2 + c_1.c_2 = 0$ so here -4 -3+7k =0 and k=1					
Ans9	(d)					
Feedback	Option (d) is correct, since Assertion is false, (Here angle between vectors $\cos\theta = 4/21$) and Reason is true					
Ans10	(b)					
Feedback	Correct option is (b), since dot product of vector a and vector b is 9 and reason also correct but reason is not explaining scalar product					